Optimization of Welding Parameters of AISI 431 and AISI 1020 Joints Joined by Friction Welding Using Taguchi Method


Creative Commons License

ADİN M. Ş., İŞCAN B., BADAY Ş.

Bilecik Şeyh Edebali Üniversitesi Fen Bilimleri Dergisi, cilt.9, sa.1, ss.453-470, 2022 (Hakemli Dergi) identifier

Özet

Martensitic stainless steel AISI 431 and low carbon steel AISI 1020 are materials used together in many different industries. However, important problems are encountered when welding (fusion welding) these materials to each other. For this reason, friction welding process (Solid-state welding) is used to join these dissimilar metals. There are very few studies on joining these materials with friction welding. Therefore, the optimization of the welding parameters used in joining these dissimilar steel pairs with friction welding is of great important. In addition, the effects of the factors dependent on friction welding parameters need to be well understood. In this study, AISI 431 and AISI 1020 steel bars were successfully joined by friction welding, and the effects of welding parameters on tensile strength and axial shortening were investigated, and welding parameters were optimized using Taguchi method to obtain quality weld joints. The experimental results of the study showed that the highest tensile strength (573.32 MPa) of the joints was 54.53%, higher than the lowest tensile strength (370.99 MPa), the highest axial shortening (23.18 mm) was 650.16%, higher than the lowest axial shortening (3.09 mm). The optimal parameters for average axial shortening and average tensile strength were determined as A3B1C3 and A3B3C2; and the highest percentage contribution values for axial shortening and tensile strength were found to be 51.55% (rotating speed) and 63.90% (rotating speed); and R2 values for the average axial shortening and average tensile strengths were found to be 97% and 99.3%, respectively.