Conformational, spectroscopic and nonlinear optical investigations on 1-(4-chlorophenyl)-3-(4-chlorophenyl)-2-propen-1-one: a DFT study


Altürk S., Boukabcha N., Benhalima N., Tamer Ö., Chouaih A., Avcı D., ...Daha Fazla

Indian Journal of Physics, cilt.91, sa.5, ss.501-511, 2017 (SCI-Expanded) identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 91 Sayı: 5
  • Basım Tarihi: 2017
  • Doi Numarası: 10.1007/s12648-016-0945-3
  • Dergi Adı: Indian Journal of Physics
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus
  • Sayfa Sayıları: ss.501-511
  • Anahtar Kelimeler: 1-(4-chlorophenyl)-3-(4-chlorophenyl)-2-propen-1-one, Conformational analysis, DFT, NBO, Nonlinear optics
  • Bilecik Şeyh Edebali Üniversitesi Adresli: Hayır

Özet

The density functional theory calculations on 1-(4-chlorophenyl)-3-(4-chlorophenyl)-2-propen-1-one (CPCPP) are performed by using B3LYP and HSEh1PBE levels. These methods along with 6-311++G(d,p) basis set have been used to determine optimized molecular geometries, vibrational frequencies, electronic absorption wavelengths and bonding features of CPCPP. The solvent effect on the electronic absorption properties of CPCPP is examined at polar (ethanol and water) and nonpolar (toluene and n-hexane) solvents. In order to find the most stable conformers, conformational analysis is carried out by using B3LYP level. The computed small energy gaps between HOMO and LUMO energies show that the charge transfers occur within CPCPP. DFT calculations have been also performed to investigate the dipole moment (μ), mean polarizability (α), anisotropy of polarizability (Δα), first order static hyperpolarizability (β) for CPCPP. The obtained values show that CPCPP is an excellent candidate to nonlinear optical materials. NBO analysis has been used to investigate the bond strengths, molecular stability, hyperconjugative interactions and intramolecular charge transfer (ICT).