The buck-pollard property for p-Cesàro matrices


Orhan C., Tas E., YURDAKADİM T.

Numerical Functional Analysis and Optimization, cilt.33, sa.2, ss.190-196, 2012 (SCI-Expanded) identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 33 Sayı: 2
  • Basım Tarihi: 2012
  • Doi Numarası: 10.1080/01630563.2011.597916
  • Dergi Adı: Numerical Functional Analysis and Optimization
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus
  • Sayfa Sayıları: ss.190-196
  • Anahtar Kelimeler: Borel property, Buck-Pollard property, Cesàro operator, Rademacher function, Summability of subsequences
  • Bilecik Şeyh Edebali Üniversitesi Adresli: Evet

Özet

Establishing a one-to-one correspondence between the interval (0, 1] and the collection of all subsequences of a given sequence {s n}, Buck and Pollard proved that {s n is (C, 1)-summable if almost all of subsequences are, but not conversely. In this article, we consider the analogous questions for the p-Cesro matrices. We show, for example, that if p>1/2 then a bounded sequence is C p-summable if and only if almost all of its subsequences are C p-summable. Copyright © 2012 Taylor and Francis Group, LLC.