Diamond and Related Materials, cilt.149, 2024 (SCI-Expanded)
Despite their significant functions and properties, the performance characteristics of Al2O3 ceramic particles and graphene oxide (GO) within hybrid copper composite coatings have been seldom investigated. This study successfully fabricated a Cu-GO- Al2O3 composite coating featuring fine particulate spherical network-like structures on St37 low carbon steel using an ultrasonic-electroless coating method. The effects of Al2O3-decorated graphene oxide hybrid reinforcement on the texture and nanomechanical properties of the copper matrix were examined. The tribological performance of the Cu-GO- Al2O3 composite coating under dry sliding conditions was evaluated, and the wear mechanism was investigated in detail. Results demonstrate that the Cu-GO- Al2O3 composite coating effectively reduces the wear rate and friction of the GO/ Al2O3 hybrid reinforced composite coating. Potentiodynamic polarization tests indicated that the Cu-GO- Al2O3 composite coating exhibits higher corrosion resistance compared to the copper matrix. The enhanced mechanical, tribological, and corrosion properties of the Cu-GO- Al2O3 composite coating are primarily attributed to: (i) the fine particulate spherical network-like structure; (ii) the synergistic effect of the GO and ceramic particle hybrid with a decorated structure; (iii) the formation of graphene oxide/ Al2O3 nanorolls in tribofilms and the excellent self-lubrication properties of graphene oxide. The Cu-GO- Al2O3 composite coating significantly improves the frictional and electrochemical properties of the copper matrix, offering new perspectives for next-generation electrical contacts and nanoelectromechanical systems.