Carbohydrate Polymers, cilt.133, ss.624-636, 2015 (SCI-Expanded)
Abstract This work presents a new approach to fabricating novel polymer nanofiber composites (NFCs) from water solution blends of PVA (hydrolyzed 89%)/ODA-MMT and Na-CMC/ODA-MMT nanocomposites as well as their folic acid (FA) incorporated modifications (NC-3-FA and NC-4-FA) through green electrospinning nanotechnology. The chemical and physical structures and surface morphology of the nanofiber composites were confirmed. Significant improvements in nanofiber morphology and size distribution of the NFC-3-FA and NFC-4-FA nanofibers with lower average means 110 and 113 nm compared with those of NFC-1/NFC-2 nanofibers (270 and 323 nm) were observed. The structural elements of polymer NFCs, particularly loaded partner NC-2, plays an important role in chemical and physical interfacial interactions, phase separation processing and enables the formation of nanofibers with unique morphology and excellent conductivity (NFC-3-FA 3.25 × 10-9 S/cm and NFC-4-FA 8.33 × 10-4 S/cm). This is attributed to the higher surface contact areas and multifunctional self-assembled supramacromolecular nanostructures of amorphous colloidal electrolytes. The anticancer activity of FA-containing nanofibers against osteocarcinoma cells were evaluated by cytotoxicity, apoptotic and necrotic analysis methods.