FAST COMPUTATION OF HALF-INTEGRAL WEIGHT MODULAR FORMS


Creative Commons License

İNAM İ., Wiese G.

Rocky Mountain Journal of Mathematics, cilt.52, sa.4, ss.1395-1401, 2022 (SCI-Expanded) identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 52 Sayı: 4
  • Basım Tarihi: 2022
  • Doi Numarası: 10.1216/rmj.2022.52.1395
  • Dergi Adı: Rocky Mountain Journal of Mathematics
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, MathSciNet, zbMATH, DIALNET
  • Sayfa Sayıları: ss.1395-1401
  • Anahtar Kelimeler: computation, Fourier coefficients, modular forms of half-integral weight, Rankin-Cohen operators
  • Bilecik Şeyh Edebali Üniversitesi Adresli: Evet

Özet

© Rocky Mountain Mathematics Consortium.To study statistical properties of modular forms, including for instance Sato-Tate like problems, it is essential to be able to compute a large number of Fourier coefficients. We show that this can be achieved in level 4 for a large range of half-integral weights by making use of one of three explicit bases, the elements of which can be calculated via fast power series operations.