Convergence of generalized sampling series in weighted spaces


Creative Commons License

Acar T., ALAGÖZ O., Aral A., Costarelli D., Turgay M., Vinti G.

Demonstratio Mathematica, cilt.55, sa.1, ss.153-162, 2022 (SCI-Expanded) identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 55 Sayı: 1
  • Basım Tarihi: 2022
  • Doi Numarası: 10.1515/dema-2022-0014
  • Dergi Adı: Demonstratio Mathematica
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, Linguistic Bibliography, zbMATH, Directory of Open Access Journals
  • Sayfa Sayıları: ss.153-162
  • Anahtar Kelimeler: generalized sampling operators, quantitative order of approximation, Voronovskaja-type theorem, weighted modulus of continuity, weighted spaces
  • Bilecik Şeyh Edebali Üniversitesi Adresli: Evet

Özet

© 2022 Tuncer Acar et al., published by De Gruyter.The present paper deals with an extension of approximation properties of generalized sampling series to weighted spaces of functions. A pointwise and uniform convergence theorem for the series is proved for functions belonging to weighted spaces. A rate of convergence by means of weighted moduli of continuity is presented and a quantitative Voronovskaja-type theorem is obtained.