Water Quality Research Journal, cilt.54, sa.3, ss.249-256, 2019 (Scopus)
Synthetic dyes are harmful to human beings, and the removal of colour from process or waste effluents is environmentally important. Crystal violet (CV) is a typical triphenylmethane dye, which is widely used in textile dyeing and paper printing industries. The present study shows that granulated and calcinated waste mussell shells (CWMS) can be used as a potential low-cost and locally available adsorbent for the removal of CV from aqueous solutions. The adsorption capacities of the CWMS for CV were investigated with respect to the effect of pH value, adsorbent dosage, contact time, initial dye concentration and temperature. Process variables were optimized, and a maximum dye adsorption of 482.0 mg/g was achieved at pH 6, 0.2 g/L adsorbent dosage, 220 min contact time and 25° C for dye initial concentration of 100 mg/L. Adsorption kinetics and isotherms were followed by the pseudo-second order model and Freundlich isotherm models, respectively. Thermodynamic parameters demonstrated that adsorption of CV was spontaneous and endothermic in nature. The results indicated that the CWMS as a new adsorbent had the potential to serve in wastewater treatment applications, especially in the removal of CV from aqueous solutions.