Vibration control of truck cabins with the adaptive vectorial backstepping design of electromagnetic active suspension system


Creative Commons License

BAŞARAN S., Basaran M.

IEEE Access, vol.8, pp.173056-173067, 2020 (SCI-Expanded) identifier

  • Publication Type: Article / Article
  • Volume: 8
  • Publication Date: 2020
  • Doi Number: 10.1109/access.2020.3025357
  • Journal Name: IEEE Access
  • Journal Indexes: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Compendex, INSPEC, Directory of Open Access Journals
  • Page Numbers: pp.173056-173067
  • Keywords: Adaptive backstepping control, Truck cabin suspension system, Truck modeling
  • Bilecik Şeyh Edebali University Affiliated: Yes

Abstract

© 2020 Institute of Electrical and Electronics Engineers Inc.. All rights reserved.The active suspension system is an important equipment that isolates the vibrations that may come from outside in a land vehicle. In heavy vehicles, the active suspension system can be used to dampen vibrations in the driver's cabin. The electromagnetic actuator is used as an active element in suspension system. Traditionally, the use of active suspension systems is mainly on automobiles and the studies related to heavy vehicles like trucks lack enough interest. In this study, dynamic modeling of a three-axle heavy vehicle cabin is performed with a half-car approach and it is aimed to suppress the disruptive effects coming from the road with active electromagnetic actuators. Lyapunov based backstepping control design is expressed in vectorial form for the heavy vehicle system, which is a multi-input multi-output system. To demonstrate the performance of the designed controller, a comparison has been made for the active and passive states for the truck cabin suspension system. The main feature of the applied control method is that it does not require knowing the actuator parameters, the adaptive term can handle the estimate of the actuator parameter. The stability of the proposed system has been proven via Lyapunov based arguments and given simulation works. The results obtained are important to suppress vibration, consequently, decreases the vibration exposure for truck drivers in terms of occupational health and safety aspects.