Effect of using borax decahydrate as nanomaterials additive diesel fuel on diesel engine performance and emissions


Özer S., DEMİR Ü., Koçyiğit S.

Energy, cilt.266, 2023 (SCI-Expanded) identifier

  • Yayın Türü: Makale / Tam Makale
  • Cilt numarası: 266
  • Basım Tarihi: 2023
  • Doi Numarası: 10.1016/j.energy.2022.126412
  • Dergi Adı: Energy
  • Derginin Tarandığı İndeksler: Science Citation Index Expanded (SCI-EXPANDED), Scopus, Academic Search Premier, PASCAL, Aerospace Database, Applied Science & Technology Source, Aquatic Science & Fisheries Abstracts (ASFA), CAB Abstracts, Communication Abstracts, Computer & Applied Sciences, Environment Index, INSPEC, Metadex, Pollution Abstracts, Public Affairs Index, Veterinary Science Database, Civil Engineering Abstracts
  • Anahtar Kelimeler: Borax decahydrate, Diesel emissions, Diesel engine
  • Bilecik Şeyh Edebali Üniversitesi Adresli: Evet

Özet

© 2022 Elsevier LtdToday, the increase in fuel consumption with the increasing number of vehicles has increased the efforts to make the engines more efficient. Diesel engines are subject to severe restrictions due to the emission problem. Although there is an emission problem, it is widely used especially in freight transportation. Many studies on diesel engines emission problems are made by academicians and manufacturers. In this sense, many studies have been carried out by adding nanomaterials to diesel fuel to reduce emissions in diesel engines. In this study, borax decahydrate as a fuel additive was studied in a diesel single-cylinder engine. Borax decahydrate was dissolved in 500 ml of methanol, 5 gr, 15 gr and 25 gr, and methanol was added to 10% diesel. To be 90% Diesel +10% Methanol (D90M10) 90% Diesel 10% Methanol + 1 gr Borax decahydrate (D90M10B1) 90% Diesel 10% Methanol + 3 gr Borax decahydrate (D90M10B2) 90% Diesel 10% Methanol + 5 gr Borax decahydrate (D90M10B3) four different fuel mixtures were tested. The experimental test measured in-cylinder pressure, heat release rate, fuel consumption, power, torque, exhaust gas temperature, smoke opacity, and exhaust emissions. Due to the rich oxygen content of borax decahydrate, it has been observed to reduce emissions, excluding NOx emissions. There was an increase in exhaust temperature, nitrogen oxides (NOx), and carbon dioxide (CO2) emissions and a serious decrease in HC, CO, brake-specific fuel consumption, and smoke opacity values. Studies should be expanded and enriched with different mixing ratios and usage patterns of boron-doped fuels in the future.